Inicio > Big data, Innovación, Smartcities, Whitepaper > Analysis: Modeling Air Pollution in the city of Santander (Spain)

Analysis: Modeling Air Pollution in the city of Santander (Spain)

We have published a new study entitled “Modeling Air Pollution in the City of Santander (Spain)“, carried out in the context of the project Ciudad2020. In this new document – in a similar way to what we did in our study on noise pollution-, we have focused on presenting the full analysis of real application in the modeling of air pollution in the city of Santander (Spain), which had already been summarily described in our whitepaper on pollution predictive modeling techniques in the sustainable city.

One of the objectives of Ciudad2020 as far as pollution in concerned is to install across the city a wide network of low-cost sensors (with respect to the current model, made of few very expensive and accurate measuring stations). However, at present, the mentioned low-cost sensor network has not been deployed in any city yet, and checking the validity of this model requires data about various pollutants related to an urban center.

cimaThe data used in this analysis are historical data provided by the Environmental Research Centre (CIMA).This entity is an autonomous body of the Government of Cantabria created by law in 1991 and headed by the Ministry of Environment. Its activity is centered on the realization of physico-chemical analyses on the state of the environment and the management of sustainability through Environmental Information, Participation, Education and Environmental Volunteering.

The data set consists of measures taken every 15 minutes between 1/1/2011 and 31/1/2013 by 4 automatic measuring stations of the Air Quality Control and Monitoring Network of Cantabria, which are located in the surroundings of Santander. The values associated to pollutants are the following: PM10 (particles in suspension of size less than 10 microns), SO2 (sulphur dioxide), NO and NO2 (nitrogen oxides), CO (carbon monoxide), O3 (ozone), BEN (benzene), TOL (toluene) and XIL (xylene). In addition, those stations that have a meteorological tower measure the following meteorological parameters: DD (wind direction), VV (wind speed), TMP (temperature), HR (relative humidity), PRB (atmospheric pressure), RS (solar radiation) and LL (precipitation level).

As described in the document, the first step in any modeling study consists in the analysis of data, performed variable by variable and from each measuring station. At least a study of the basic statistics by season (average and standard deviation, median, mode), the distribution of values (histogram) both at global and monthly level and the hourly distribution are requested. The moving average is also analyzed, a statistical feature applicable to the analysis of tendencies which smoothes the fluctuations typical of instant measurements and captures the trends in a given period.

estaciones-cantabria

The next step is to analyze how the variables depend on the others, in order to select the set of variables that most governs the behavior of the output variable. For that purpose correlation analysis has been employed, which is a statistical tool that allows measuring and describing the degree or intensity of association between two variables. In particular, Pearson’s correlation coefficient has been used, which measures the linear relationship between two random quantitative variables X and Y.

Analyses of dependencies have been carried out at the same moment of time, in moments of the past, with differentiated values (difference between the concentration level registered for a contaminant in a given moment of time and the level of 30 minutes before, aiming at detecting trends over time regardless of absolute values) and the moving average value of such contaminant considering different time intervals.

The next step is to evaluate a series of algorithms of modeling with monitored learning (prediction, classification) or not monitored (grouping) to draw conclusions about the behavior of pollution variables. The prediction analysis has been focused on Santander’s center, with 1-hour, 2-hour, 4-hour, 8-hour and 24-hour prediction horizons. Then, the models for each pollution variable in all those horizons have been trained and evaluated. Different machine learning algorithms have been trained in each case (variable-prediction horizon combination): M5P, IBk, Multilayer Perceptron, linear regression, Regression by Discretization, RepTree, Bagging with RepTree, etc. The assessment is performed by comparing the mean absolute error of all different prediction methods.

pollution

For example, when studying the 8-hour prediction, it can be noticed that the hour of the day becomes more important, since citizens behave cyclically and probably what happens at 7 a.m. (e.g. people go to work) relates to what happens at 3 p.m. (e.g. people come back from work).

The last step of the data mining process according to the CRISP-DM methodology would be the implementation in a system of environmental management for obtaining real-time predictions on the different values of pollutants. This implementation has to consider logically the results and conclusions obtained in the analysis and modeling processes at the time of setting up the deployment and prioritizing possible investments.

The most important thing to emphasize is that the analysis illustrates and details the steps to follow in a project of environmental pollution modeling using data mining, although, logically, the analysis and the concrete conclusions only apply, in general, to the city of Santander. You can access the complete study, more information and demos on our website: http://www.daedalus.es/ciudad2020/. If you have any questions or comments, please do not hesitate to contact us, we will be happy to assist you.

[Translation by Luca de Filippis]

  1. Aún no hay comentarios.
  1. No trackbacks yet.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

A %d blogueros les gusta esto: